Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
J Immunol Methods ; 497: 113123, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34428402

RESUMO

Brucellosis is a well-known infectious disease in most parts of the world, especially in developing countries, common between humans and animals. Brucellosis is diagnosed by serological tests based on lipopolysaccharides (LPSs), which are bacterial cell wall antigens, and due to the similarities between LPSs antigens of some gram-negative bacterias, false-positive responses are inevitable. Alternatively, Outer membrane proteins (Omps), as antigenic conserved membrane proteins, can be used to diagnose brucellosis instead of LPS antigens. In this study, by using bioinformatics tools, linear B-cell epitopes were selected from Omp22, Omp25, and Omp31 antigens and fused with the rigid KP linker (K = Lysine, P=Proline). Designed gene cassette was cloned into pET-28a (+) vector and expressed recombinant protein was purified using Ni-NTA chromatography column and was confirmed with Poly-Histidine-HRP antibody. Finally, recombinant protein's seroreactivity with serum samples from 37 patients and 27 healthy individuals was evaluated by western blotting and enzyme-linked immunosorbent assay (ELISA) methods. Western blotting results showed high reactivity of the recombinant protein with serum samples of Brucella infected patients. ELISA results were analyzed using the receiver operating curve (ROC). Optical density cut-off point, accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and Youden index J for recombinant protein were > 0.809, 84.37%,83.78%,88.89%,88.57%, 79.31% and 0.72 respectively. Western blotting and ELISA results showed that our recombinant protein has good sensitivity and specificity for the diagnosis of brucellosis.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Western Blotting , Brucella melitensis/imunologia , Brucelose/diagnóstico , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B , Epitopos Imunodominantes , Testes Sorológicos , Brucelose/sangue , Brucelose/imunologia , Estudos de Casos e Controles , Humanos , Valor Preditivo dos Testes , Proteínas Recombinantes/imunologia , Reprodutibilidade dos Testes
2.
Vet Res ; 52(1): 75, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078437

RESUMO

Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in humans and various animals. The threat of brucellosis has increased, yet currently available live attenuated vaccines still have drawbacks. Therefore, subunit vaccines, produced using protein antigens and having the advantage of being safe, cost-effective and efficacious, are urgently needed. In this study, we used core proteome analysis and a compositive RV methodology to screen potential broad-spectrum antigens against 213 pathogenic strains of Brucella spp. with worldwide geographic distribution. Candidate proteins were scored according to six biological features: subcellular localization, antigen similarity, antigenicity, mature epitope density, virulence, and adhesion probability. In the RV analysis, a total 32 candidate antigens were picked out. Of these, three proteins were selected for assessment of immunogenicity and preliminary protection in a mouse model: outer membrane protein Omp19 (used as a positive control), type IV secretion system (T4SS) protein VirB8, and type I secretion system (T1SS) protein HlyD. These three antigens with a high degree of conservation could induce specific humoral and cellular immune responses. Omp19, VirB8 and HlyD could substantially reduce the organ bacterial load of B. abortus S19 in mice and provide varying degrees of protection. In this study, we demonstrated the effectiveness of this unique strategy for the screening of potential broad-spectrum antigens against Brucella. Further evaluation is needed to identify the levels of protection conferred by the vaccine antigens against wild-type pathogenic Brucella species challenge.


Assuntos
Vacina contra Brucelose/farmacologia , Brucella abortus/imunologia , Brucella melitensis/imunologia , Brucella suis/imunologia , Brucelose/veterinária , Animais , Brucelose/prevenção & controle , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Vacinologia/métodos
3.
Biologicals ; 72: 10-17, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34167853

RESUMO

Brucella is an infectious disease with difficult treatment faced with drug resistance and recurrence of infection. Despite advances in the development of effective vaccines against brucellosis infections, there is still a need for more effective vaccine against brucellosis. In this study, we developed a nanovaccine for delivery of lipopolysaccharide Brucella melitensis antigen to the immune system using PLGA nanoparticles to prevent Brucella infection, which is associated with the stimulation of both humoral and cellular immune systems. In particular, we determined the rate of produced immunoglobulines and their functional effectiveness on the immune system by carring out opsonophagocytosis and challenge tests. According to the results, it was determined that PLGA improve the delivery of LPS antigen to the immune system to enhance the production of immunoglobulins levels and their efficiency to remove Brucella bacteria.


Assuntos
Vacina contra Brucelose/imunologia , Brucelose , Lipopolissacarídeos/imunologia , Nanopartículas , Animais , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Feminino , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
4.
Res Vet Sci ; 137: 252-261, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34049112

RESUMO

Brucellosis caused by Brucella abortus and Brucella melitensis is endemic in the Republic of Azerbaijan but a complex mix of fiscal, political and technical constraints has impeded regulatory authority decision making for adoption of a sustainable national control programme. This paper reports a series of epidemiologic studies of the disease in animals and humans which we conducted between 2009 and 2020. A preliminary study and a subsequent larger study using vaccination of all non-pregnant female sheep and goats of breeding age and all females between 3 and 8 months with conjunctival Rev1 vaccine both recorded significant reduction in small ruminant seroprevalences. A case control study of winter pasture flocks found many case and control farmers used raw milk to make dairy products for sale, ate fresh cheese and sold dairy products in unregulated markets. Almost all farmers expressed willingness to pay a portion of the costs associated with elimination of brucellosis from their flocks. A pilot human study in 2009 led to a large study in 2017 which recorded an overall seroprevalence of 8.1% in humans. Persons in farm related occupations were at greater risk than urban persons and males were more likely to be seropositive than females. Risk factors included keeping small ruminants, using raw milk cheese and slaughtering animals whereas having heard education information about brucellosis and vaccinating against brucellosis were protective.


Assuntos
Vacina contra Brucelose/administração & dosagem , Brucella melitensis , Brucelose/prevenção & controle , Animais , Azerbaijão/epidemiologia , Brucella melitensis/imunologia , Brucelose/epidemiologia , Brucelose/veterinária , Estudos de Casos e Controles , Estudos Transversais , Fazendeiros , Feminino , Doenças das Cabras/epidemiologia , Doenças das Cabras/prevenção & controle , Cabras , Humanos , Fatores de Risco , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/prevenção & controle , Vacinação/veterinária
5.
Arch Microbiol ; 203(5): 2591-2596, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33689001

RESUMO

This study was designed to introduce the recombinant Lactococcus lactis MG1363 as a cell factory candidate for production of recombinant Brucella melitensis Omp16-Human IL2 (r-Omp16-IL2) and to suggest it as a promising safe, non-pathogenic mucosal live vaccine against brucellosis. Three groups of BALB/c mice (10 mice per group) were intragastrically administrated with phosphate-buffered saline (PBS), L. lactis harboring the empty pAMJ2008 plasmid and with L. lactis expressing rOmp-IL2. The first two groups were classified as control groups and the third one is indicated as treatment group. Another group was injected by the intraperitoneal (i.p.) route with purified rOmp16-IL2 protein. The total serum IgG of each group was assessed with indirect ELISAs at two days before immunization and also two weeks after the last immunization. Results showed that BALB/c mice intragastrically administrated with L. lactis expressing rOmp-IL2 had dominant IgG response compared to the control (PBS administrated) group (P < 0.05). The level of IgG was significantly increased by intraperitoneally injection of recombinant Omp-IL2 in adjuvant compared to the intragastrically administration of PBS and L. lactis/pAMJ2008 as control groups, and also compared to L. lactis/pAMJ2008-rOmp-IL2 (P < 0.05). Our findings provide the use of L. lactis rOmp16-IL2 as a new promising alternative safe strategy than presently live attenuated vaccines toward developing an oral vaccine or subunit-based vaccine against brucellosis.


Assuntos
Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/imunologia , Vacina contra Brucelose/imunologia , Brucella melitensis/imunologia , Imunoglobulina G/sangue , Interleucina-2/imunologia , Lactococcus lactis/genética , Adjuvantes Imunológicos , Animais , Proteínas da Membrana Bacteriana Externa/genética , Humanos , Imunidade , Interleucina-2/genética , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos , Proteínas Recombinantes de Fusão/imunologia , Vacinas Sintéticas/imunologia
6.
Vet Immunol Immunopathol ; 234: 110223, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711712

RESUMO

Caprine brucellosis is a chronic, world-wide distributed disease which causes reproductive failure in goats and Brucella melitensis, its causative agent, bears a great zoonotic potential. There is evidence suggesting that some cattle and pigs have an innate ability to resist Brucella infection, but this has not yet been investigated in goats. In this study, we compared caprine macrophages that exhibit extreme restriction and permissiveness to B. melitensis' intracellular growth in vitro. Monocyte derived macrophages (MDMs) from 110 female goats were cultured and challenged in vitro with B. melitensis 16 M. After initial screening, 18 donor goats were selected based on their macrophages ability to restrict or allow bacterial intracellular growth and some elements of humoral and cellular immunity were studied in depth. MDMs that were able to restrict the pathogen's intracellular growth showed enhanced bacterial internalization, although there were no differences between groups in the production of reactive oxygen and nitrogen intermediates following 48 h treatment with heat-killed B. melitensis. Moreover, there were no differences between groups in the level of antibodies reacting with keyhole limpet hemocyanin (natural antibodies, NAbs) or with Brucella LPS antigens (cross-reacting antibodies, CrAbs), although a strong positive correlation between individual levels of IgM NAbs and IgM CrAbs was detected. Altogether, these results represent an initial step in understanding innate primary host response to B. melitensis, and deciphering which mechanisms may determine a successful outcome of the infection in goats.


Assuntos
Brucella melitensis/crescimento & desenvolvimento , Brucella melitensis/imunologia , Brucelose/imunologia , Brucelose/veterinária , Doenças das Cabras/imunologia , Imunidade Inata , Macrófagos/microbiologia , Fenótipo , Animais , Anticorpos Antibacterianos/sangue , Feminino , Doenças das Cabras/microbiologia , Cabras/imunologia , Cabras/microbiologia , Fagocitose
7.
Mol Immunol ; 133: 44-52, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33631554

RESUMO

Brucella is an intracellular zoonotic pathogen that can affect many hosts. Brucella melitensis Rev.1 is a live attenuated, is one of the most effective vaccine strain against brucellosis. It can be used safely in sheep, goats, and even cattle. Although many studies are available on this topic, there is no effective vaccine strain for sheep and goats that distinguishes the antibody titer produced between the field infections and vaccinations. Outer membrane protein 19 (Omp 19) is both virulent and a protective antigen found on the cell-wall of the Brucella strain. In this study, used the suicide plasmid pJQ200KS, which contained homologous region without Omp19 Open Reading Frame (ORF) that was transferred to B. melitensis Rev.1 and further transformed into spheroplasts along with penicillin, ampicillin, and glycine by electroporation. To obtain a mutant vector from Escherichia coli, we used the heat shock transformation method along with the blue-white colony screening using X-gal media, whereas for the gene transfer in Brucella, we used electroporation. A scanning electron microscope (S.E.M) was used to observe the spheroplast transformation while the mutant vector and deletion mutants were confirmed through PCR and sequence analysis. In the mouse model efficacy trials, three commercial vaccines were found to comply with the OIE standards. Although the deletion mutants 19 and 44/10 had similar efficiency as the commercial vaccines in terms of stimulation power, the ELISA test with Omp19 protein showed the same results as the negative control. The Rev.1 Omp19 deletion mutants obtained in this study contained sufficient residual virulence, and their protective immunity was similar to the commercial vaccines. The study showed that a vaccine prepared using a B. melitensis Rev.1 ΔOmp19 can act as a marker vaccine or differentiate infected from vaccinated animals (DIVA) through the ELISA test that detects the Omp19 protein.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacina contra Brucelose/imunologia , Brucella melitensis/genética , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Lipoproteínas/genética , Animais , Brucella abortus/genética , Brucelose/microbiologia , Modelos Animais de Doenças , Eletroporação/métodos , Feminino , Camundongos , Plasmídeos/genética , Vacinação , Vacinas Atenuadas/imunologia , Virulência/genética , Virulência/imunologia
8.
Infect Dis Poverty ; 10(1): 13, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593447

RESUMO

BACKGROUND: A new candidate vector vaccine against human brucellosis based on recombinant influenza viral vectors (rIVV) subtypes H5N1 expressing Brucella outer membrane protein (Omp) 16, L7/L12, Omp19 or Cu-Zn SOD proteins has been developed. This paper presents the results of the study of protection of the vaccine using on guinea pigs, including various options of administering, dose and frequency. Provided data of the novel vaccine candidate will contribute to its further movement into the preclinical stage study. METHODS: General states of guinea pigs was assessed based on behavior and dynamics of a guinea pig weight-gain test. The effectiveness of the new anti-brucellosis vector vaccine was determined by studying its protective effect after conjunctival, intranasal and sublingual administration in doses 105 EID50, 106 EID50 and 107 EID50 during prime and boost vaccinations of animals, followed by challenge with a virulent strain of B. melitensis 16 M infection. For sake of comparison, the commercial B. melitensis Rev.1 vaccine was used as a control. The protective properties of vaccines were assessed by quantitation of Brucella colonization in organs and tissues of infected animals and compared to the control groups. RESULTS: It was observed a gradual increase in body weight of guinea pigs after prime and booster immunization with the vaccine using conjunctival, intranasal and sublingual routes of administration, as well as after using various doses of vaccine. The most optimal way of using the vaccine has been established: double intranasal immunization of guinea pigs at a dose of 106 EID50, which provides 80% protection of guinea pigs from B. melitensis 16 M infection (P < 0.05), which is comparable to the results of the effectiveness of the commercial B. melitensis Rev.1 vaccine. CONCLUSIONS: We developed effective human vaccine candidate against brucellosis and developed its immunization protocol in guinea pig model. We believe that because of these studies, the proposed vaccine has achieved the best level of protection, which in turn provides a basis for its further promotion.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Vacina contra Brucelose/administração & dosagem , Vacina contra Brucelose/genética , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Virus da Influenza A Subtipo H5N1/genética , Administração Intranasal , Administração Oftálmica , Administração Sublingual , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Peso Corporal , Vacina contra Brucelose/imunologia , Brucella melitensis/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Cobaias , Humanos , Imunização Secundária
9.
Probiotics Antimicrob Proteins ; 13(1): 80-89, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32661939

RESUMO

Since Brucella infection mostly occurs through the mucosal surfaces, immune response induced by vaccine that is delivered by a way of mucosal route can be drastically enhanced to control the brucellosis. Omp31is the major outer membrane protein of Brucella, and is considered as a protective antigen against Brucella infection. Accordingly, Lactococcus lactis has been used as an antigen-delivering vector to develop a vaccine-induced mucosal response for having a safer vaccination against brucellosis. A designed omp31 gene fused to the usp45 signal peptide and M6 cell wall anchor was sub cloned in the pNZ7021 expression vector, and a recombinant L. lactis displaying Omp31 was constructed. Omp31 protein expression was confirmed using Western blotting and immunofluorescence analysis. Animals were orally and intraperitoneally immunized with live or killed L. lactis expressing Omp31, respectively. The humoral and cellular immune responses were evaluated by measuring the specific cytokines and antibodies. sIgA, serum IgA, IgM, and total IgG antibodies significantly increased in the mice immunized with live recombinant L. lactis expressing Omp31 and also serum IgM, and total IgG antibodies significantly increased in mice immunized with killed recombinant L. lactis expressing Omp31. Among IgG subtypes, IgG2a response was significantly higher in both groups compared to IgG1. In mice groups immunized with recombinant L. lactis, the IFN-γ and IL-10 level elevated; however, there was no change in the level of IL-4. These results indicated that recombinants L. lactis induce both humoral and cellular immune responses in mice, and also vaccines based on L. lactis-derived live carriers are promising interventions against Brucella melitensis infections.


Assuntos
Proteínas da Membrana Bacteriana Externa , Vacina contra Brucelose , Brucella melitensis/genética , Brucelose , Lactococcus lactis , Microrganismos Geneticamente Modificados , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Vacina contra Brucelose/genética , Vacina contra Brucelose/imunologia , Brucella melitensis/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Feminino , Lactococcus lactis/genética , Lactococcus lactis/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/imunologia
10.
Transbound Emerg Dis ; 68(4): 2364-2375, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33118284

RESUMO

Small ruminant brucellosis remains endemic in many low- and middle-income countries (LMICs), where it poses a major economic and public health burden. Lack of resources to support long-term vaccination, inherent characteristics of small ruminant production systems such as mixing of different flocks for grazing and limitations of the vaccines currently available, which can induce abortion in pregnant animals, have all hindered the effectiveness of control programmes. In the current study, the likely effect of different control scenarios on the seroprevalence of brucellosis among the small ruminant population in a hypothetical area of an endemic region was simulated using compartmental models. The model accounts for variability in transmission rates between villages and also simulates control scenarios that target villages with high seroprevalence. Our results show that vaccination of young replacement animals only can effectively reduce the prevalence of small ruminant brucellosis in endemic settings if a high vaccination coverage is achieved. On the other hand, test-and-slaughter alone is not a promising strategy for control of small ruminant brucellosis under husbandry practices typical of endemic low-resource settings. Furthermore, results show the potential success of some strategies requiring a relatively low overall vaccination coverage such as the vaccination of 50% of young replacements and 25% of adult animals each year. Control strategies selectively targeting high initial seroprevalence villages (p > 10%) did not decrease the overall seroprevalence to acceptable levels in most of the examined scenarios. Scenario analysis showed that the efficacy of the simulated control strategies can be improved mostly by decreasing the proportion of between-village trade and also by improving the performance of the used serological tests and increasing vaccine efficacy.


Assuntos
Vacina contra Brucelose , Brucella melitensis , Brucelose , Animais , Brucella melitensis/imunologia , Brucelose/epidemiologia , Brucelose/prevenção & controle , Brucelose/veterinária , Egito/epidemiologia , Feminino , Gravidez , Ruminantes , Estudos Soroepidemiológicos
11.
Biomed Res Int ; 2020: 1438928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274194

RESUMO

In this paper, we first used recombinant influenza viral vector (rIVV) subtype H5N1 expressing from the open reading frame of NS1 80 and NS1 124 amino acids of Brucella outer membrane proteins (Omp) 16 and 19, ribosomal L7/L12, and Cu-Zn superoxide dismutase (SOD) proteins to develop a human brucellosis vaccine. We made 18 combinations of IVVs in mono-, bi-, and tetravalent vaccine formulations and tested them on mice to select the safest and most effective vaccine samples. Then, the most effective vaccine candidates were further tested on guinea pigs. Safety of the rIVV-based vaccine candidate was evaluated by a mouse weight-gain test. Mice and guinea pigs were challenged with the virulent strain B. melitensis 16M. The protective effect of the rIVV-based vaccine candidate was assessed by quantitation of Brucella colonization in tissues and organs of challenged animals. All vaccine formulations were safe in mice. Tested vaccine formulations, as well as the commercial B. melitensis Rev.1 vaccine, have been found to protect mice from B. melitensis 16M infection within the range of 1.6 to 2.97 log10 units (P < 0.05). Tetravalent vaccine formulations from the position of NS1 80 amino acids (0.2 ± 0.4), as well as the commercial B. melitensis Rev.1 vaccine (1.2 ± 2.6), have been found to protect guinea pigs from B. melitensis 16M infection at a significant level (P < 0.05). Thus, tetravalent vaccine formulation Flu-NS1-80-Omp16+Flu-NS1-80-L7/L12+Flu-NS1-80-Omp19+Flu-NS1-80-SOD was chosen as a potential vaccine candidate for further development of an effective human vaccine against brucellosis. These results show a promising future for the development of a safe human vaccine against brucellosis based on rIVVs.


Assuntos
Vacina contra Brucelose/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Composição de Medicamentos , Vetores Genéticos/efeitos adversos , Epitopos Imunodominantes/metabolismo , Influenza Humana/virologia , Proteínas/metabolismo , Animais , Peso Corporal , Brucella melitensis/imunologia , Brucella melitensis/patogenicidade , Chlorocebus aethiops , Cobaias , Humanos , Imunização , Imunização Secundária , Camundongos , Células Vero , Virulência
12.
Comp Immunol Microbiol Infect Dis ; 73: 101554, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32979614

RESUMO

Canine brucellosis is a contagious disease associated with health implications for humans as well as for a wide range of wild and domesticated animals. In this study, 173 dog blood specimens were sampled from herding dogs in three different provinces including Tehran (n = 127), Qom (n = 40) and Alborz (n = 6) provinces. The presence of Brucella antibodies was determined using Rose Bengal plate test (RBPT), slow agglutination test (SAT) and 2-mercaptoethanol (2-ME), respectively. The seropositive samples were further screened using blood culture and PCR tests to identify and differentiate the implicated Brucella species. According to our results, 24.3% (42/173), 13.8% (24/173) and 6.3% (11/173) of blood samples were tested positive using RBPT, SAT and 2-ME, respectively. However, among 42 seropositive samples, only 38.1% (16/42) and 14.2% (6/42) were positive by PCR and culture, respectively. Brucella melitensis biovar 1 and biovar 2 was isolated from the bacterial cultures of 6 blood samples and confirmed by biotyping, AMOS PCR and Bruce-ladder PCR assays. These findings highlight the potential risk of Brucella transmission from dog to humans along with other livestock and reflect the critical role of infected dogs in the persistence of Brucella infections among ruminant farms. This study stresses the need for further epidemiological investigations on canine brucellosis among herding dogs and suggests the systematic screening of the disease among companion animals such as dogs in order to improve brucellosis surveillance and control programs.


Assuntos
Brucella melitensis , Brucelose/veterinária , Doenças do Cão/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Brucella melitensis/imunologia , Brucelose/diagnóstico , Brucelose/epidemiologia , Brucelose/prevenção & controle , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Cães , Fazendas , Irã (Geográfico) , Ruminantes
13.
PLoS One ; 15(9): e0239854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986759

RESUMO

Brucellosis is a zoonotic disease known to be endemic to parts of western and sub-Saharan Africa. However, the epidemiology for humans and animals remains largely unknown in many of these countries with Cameroon being a typical example. Despite common knowledge that brucellosis affects livestock, the actual number of infected animals remains unknown. Through a scoping review, the current known status of the disease is described. The aim is to ascertain relevant and publicly accessible research and knowledge of human and animal brucellosis in the country, and to provide an overview of the factors associated with its known persistence. Seroprevalence has been estimated and published in 12 separate instances (1 human; 9 cattle; 1 human and cattle; and 1 that includes cattle, pigs, and small ruminants), between 1982 and 2020, in 9 of the country's 10 geopolitical regions. In 1983, Brucella abortus and B. melitensis were isolated in cattle, but no further bacterial isolation has been published since. The seroprevalence from 196 total humans has ranged between 5.6% and 28.1%, and between 3.0% and 30.8% for 14,044 total cattle. As there is no ongoing surveillance program, it is not currently possible to identify the specific Brucella spp. that are endemic to the country and its regions. There are sufficient agricultural systems of cattle, pigs, goats, and sheep to sustain the presence of multiple Brucella spp. Surveillance information is the cornerstone of epidemiologic decision making, and is needed to direct policy makers, public health authorities, and veterinary services to appropriate actions. A combination of serological and molecular based diagnostics for surveillance is necessary to identify, quantify, and direct the appropriate public health interventions. Cameroon has an opportunity to build public and animal health infrastructure, leading the way for central Africa in the management and future eradication of brucellosis.


Assuntos
Brucella abortus/isolamento & purificação , Brucella melitensis/isolamento & purificação , Brucelose/epidemiologia , Brucelose/veterinária , Animais , Brucella abortus/imunologia , Brucella melitensis/imunologia , Brucelose/diagnóstico , Brucelose/microbiologia , Camarões/epidemiologia , Doenças Endêmicas/veterinária , Monitoramento Epidemiológico/veterinária , Humanos , Gado/microbiologia , Estudos Soroepidemiológicos , Zoonoses/epidemiologia , Zoonoses/microbiologia
14.
Microbiol Immunol ; 64(11): 730-736, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32965738

RESUMO

Brucellosis is a major zoonotic disease, and Brucella melitensis is the species most often associated with human infection. Vaccination is the most efficient tool for controlling animal brucellosis, with a consequent decrease of incidence of human infections. Commercially available live attenuated vaccines provide some degree of protection, but retain residual pathogenicity to human and animals. In this study, Brucella ovis ∆abcBA (Bo∆abcBA), a live attenuated candidate vaccine strain, was tested in two formulations (encapsulated with alginate and alginate plus vitelline protein B [VpB]) to immunize mice against experimental challenge with B. melitensis strain 16M. One week after infection, livers and spleens of immunized mice had reduced numbers of the challenge strain B. melitensis 16M when compared with those of nonimmunized mice, with a reduction of approximately 1-log10 of B. melitensis 16M count in the spleens from immunized mice. Moreover, splenocytes stimulated with B. melitensis antigens in vitro secreted IFN-γ when mice had been immunized with Bo∆abcBA encapsulated with alginate plus VpB, but not with alginate alone. Body and liver weights were similar among groups, although spleens from mice immunized with Bo∆abcBA encapsulated with alginate were larger than those immunized with Bo∆abcBA encapsulated with alginate plus VpB or nonimmunized mice. This study demonstrated that two vaccine formulations containing Bo∆abcBA protected mice against experimental challenge with B. melitensis.


Assuntos
Vacina contra Brucelose/imunologia , Brucella melitensis/imunologia , Brucella ovis/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Animais , Citocinas , Modelos Animais de Doenças , Feminino , Imunização , Fígado/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Baço/imunologia , Vacinação , Vacinas Atenuadas/imunologia
15.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32690632

RESUMO

Reproductive failure is the hallmark of brucellosis in animals. An uncommon but important complication in pregnant women who become acutely infected with Brucella melitensis is spontaneous pregnancy loss or vertical transmission to the fetus. Unfortunately, the mechanism behind reproductive failure is still obscure, partially due to the lack of a proper study model. Recently, it was demonstrated that intratracheal (IT) inoculation of nonpregnant guinea pigs would replicate features of clinical disease in humans. To determine if IT inoculation would induce reproductive disease, guinea pigs were infected at mid-gestation and monitored daily for fever and abortions. Fever developed between day 14 to 18 postinoculation, and by 3 weeks postinoculation, 75% of pregnant guinea pigs experienced stillbirths or spontaneous abortions mimicking natural disease. Next, to investigate the guinea pig as a model for evaluating vaccine efficacy during pregnancy, nonpregnant guinea pigs were vaccinated with S19, 16MΔvjbR + Quil-A, or 100 µl PBS + Quil-A (as control). Guinea pigs were bred and vaccinated guinea pigs were challenged at mid-gestation with B. melitensis IT inoculation and monitored for fever and abortions. Vaccination with both vaccines prevented fever and protected against abortion. Together, this study indicates that pregnant guinea pigs are an appropriate animal model to study reproductive disease and offer an improved model to evaluate the ability of vaccine candidates to protect against a serious manifestation of disease.


Assuntos
Vacina contra Brucelose/administração & dosagem , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Modelos Animais de Doenças , Complicações Infecciosas na Gravidez/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Brucella melitensis/patogenicidade , Brucelose/microbiologia , Brucelose/patologia , Feminino , Cobaias , Humanos , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Placenta/microbiologia , Placenta/patologia , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/patologia , Vacinação
16.
Int J Nanomedicine ; 15: 3877-3886, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581535

RESUMO

INTRODUCTION: Vaccine formulation with appropriate adjuvants is an attractive approach to develop protective immunity against pathogens. Calcium phosphate nanoparticles (CaPNs) are considered as ideal adjuvants and delivery systems because of their great potential for enhancing immune responses. In the current study, we have designed nanoparticle-based vaccine candidates to induce immune responses and protection against B. melitensis and B. abortus. MATERIALS AND METHODS: For this purpose, we used three Brucella antigens (FliC, 7α-HSDH, BhuA) and two multi-epitopes (poly B and poly T) absorbed by CaPNs. The efficacy of each formulation was evaluated by measuring humoral, cellular and protective responses in immunized mice. RESULTS: The CaPNs showed an average size of about 90 nm with spherical shape and smooth surface. The CaPNs-adsorbed proteins displayed significant increase in cellular and humoral immune responses compared to the control groups. In addition, our results showed increased ratio of specific IgG2a (associated with Th1) to specific IgG1 (associated with Th2). Also, immunized mice with different vaccine candidate formulations were protected against B. melitensis 16M and B. abortus 544, and showed same levels of protection as commercial vaccines (B. melitensis Rev.1 and B. abortus RB51) except for BhuA-CaPNs. DISCUSSION: Our data support the hypothesis that these antigens absorbed with CaPNs could be effective vaccine candidates against B. melitensis and B. abortus.


Assuntos
Antígenos de Bactérias/química , Vacina contra Brucelose/química , Vacina contra Brucelose/imunologia , Nanopartículas/química , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Animais , Proteínas de Bactérias/imunologia , Brucella abortus/imunologia , Brucella melitensis/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Fosfatos de Cálcio/química , Sistemas de Liberação de Medicamentos , Feminino , Imunidade Humoral , Imunização , Imunoglobulina G/imunologia , Proteínas de Membrana Transportadoras/imunologia , Camundongos Endogâmicos BALB C
17.
mSphere ; 5(3)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404509

RESUMO

As a natural host species for Brucella melitensis, pregnant sheep offer an ideal model to evaluate vaccine candidates for safety. B. melitensis strain Rev. 1 has been used almost exclusively to prevent brucellosis in small ruminants, but it causes abortions when given to pregnant animals. To evaluate the comparative safety of the candidate Brucella melitensis 16MΔvjbR, pregnant sheep (n = 6) were vaccinated subcutaneously with 1 × 1010 CFU/ml of 16MΔvjbR or 1 × 109 CFU/ml Rev. 1 at a highly susceptible stage of gestation (approximately 70 days). 16MΔvjbR resulted in only 1 abortion (1 of 6) compared with 4 of 6 (66.7%) abortions in the Rev. 1 cohort. The placenta was evaluated by culture to determine if vaccination resulted in colonization. As another measure of safety, effects of B. melitensis on the fetus/offspring (vertical transmission) was evaluated by culture and histopathology of fetal tissues to determine if vaccination prevented infection of the fetus. Vaccination with 16MΔvjbR resulted in less vertical transmission than Rev. 1. To determine if vaccination was efficacious and could reduce tissue colonization in sheep, the same cohort of sheep were challenged 5 weeks postpartum by conjunctival inoculation with 1 × 107 CFU/ml B. melitensis Protection was similar between Rev. 1 and 16MΔvjbR, with no statistical difference in colonization in the target organs. Overall, the 16MΔvjbR vaccine was considered safer than Rev. 1 based on a reduced number of abortions and limited infection in the offspring. Future experiments are needed to further refine the vaccine dose to increase the safety margin and to evaluate protection in pregnant ewes.IMPORTANCE Brucellosis is one of the most commonly reported zoonotic disease with a worldwide distribution. Of the 12 Brucella species, Brucella melitensis is considered the most virulent and causes reproductive failure (abortions/stillbirths) in small ruminants, which can spread the disease to other animals or to humans. Vaccination of small ruminants is a key measure used to protect both human and animal health. However, the commercially available live-attenuated vaccine for Brucella melitensis Rev. 1 retains virulence and can cause disease in animals and humans. In order to evaluate the safety and efficacy in sheep, we vaccinated pregnant sheep with 16MΔvjbR Our results indicate that 16MΔvjbR was safer for use during pregnancy, provided a similar level of protection as Rev. 1, and could be considered an improved candidate for future vaccine trials.


Assuntos
Vacina contra Brucelose/imunologia , Brucella melitensis/genética , Brucella melitensis/imunologia , Brucelose/veterinária , Doenças dos Ovinos/prevenção & controle , Vacinação/veterinária , Animais , Vacina contra Brucelose/administração & dosagem , Brucelose/prevenção & controle , Túnica Conjuntiva/microbiologia , Modelos Animais de Doenças , Feminino , Gravidez , Ovinos/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
18.
Mol Cell Probes ; 53: 101581, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32428653

RESUMO

The genus Brucella includes several genetically monomorphic species but with different phenotypic and virulence characteristics. In this study, proteins of two Brucella species, B. melitensis type strain 16 M and B. ovis REO198 were compared by proteomics approach, in order to explain the phenotypic and pathophysiological differences among Brucella species and correlate them with virulence factors. Protein extracts from the two Brucella species were separated by SDS-PAGE and 5 areas, which resulted qualitatively and quantitatively different, were analyzed by nLC-MS/MS. A total of 880 proteins (274 proteins of B. melitensis and 606 proteins of B. ovis) were identified; their functional and structural features were analyzed by bioinformatics tools. Four unique peptides belonging to 3 proteins for B. ovis and 10 peptides derived from 7 proteins for B. melitensis were chosen for the high amount of predicted B-cell epitopes exposed to the solvent. Among these proteins, outer-membrane immunogenic protein (N8LTS7) and 25 kDa outer-membrane immunogenic protein (Q45321), respectively of B. ovis and B. melitensis, could be interesting candidates for improving diagnostics tests and vaccines. Moreover, 8 and 13 outer and periplasmic non homologue proteins of B. ovis and B. melitensis were identified to screen the phenotypic differences between the two Brucella strains. These proteins will be used to unravel pathogenesis and ameliorate current diagnostic assays.


Assuntos
Brucella melitensis/patogenicidade , Brucella ovis/patogenicidade , Biologia Computacional/métodos , Proteômica/métodos , Fatores de Virulência/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Brucella melitensis/imunologia , Brucella melitensis/metabolismo , Brucella ovis/imunologia , Brucella ovis/metabolismo , Cromatografia Líquida , Epitopos de Linfócito B/análise , Nanotecnologia , Espectrometria de Massas em Tandem , Fatores de Virulência/imunologia
19.
Sci Rep ; 10(1): 8543, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444793

RESUMO

Brucella is alpha-2 Proteobacteria mainly responsible for multi-factorial bacterial zoonotic disease brucellosis with low concentration (10-100 CFU) required to establish the infection. In this study, we developed sandwich ELISA with detection range of 102 to 108 cells mL-1 and limit of detection at 103 cells mL-1 by employing polyclonal rabbit IgG (capture antibody, 10 µg mL-1) and mice IgG (detection antibody, 50 µg mL-1) antibody for its detection. Surface Plasmon Resonance evaluated the interaction of detection antibody with whole cell spiked serum samples at LOD of 102 cells mL-1 along with non co-operative interaction of protein albumin. Further, kinetic evaluation study using detection antibody against cell envelope antigen was performed whereby, Equilibrium Dissociation Constant (KD) and Maximum Binding Capacity (Bmax) were found to be 16.48 pM and 81.67 m° for Brucella abortus S99 and 0.42 pM and 54.50 m° for Brucella melitensis 16 M, respectively. During interference study, sandwich ELISA assay cross-reacted with either of the polyclonal antibody of above Brucella species. Upon validation, no cross-reactivity observed with bacteria-closely related to Brucella. In conclusion, developed semi-quantitative sandwich immunoassay is sensitively rapid in whole cell detection of Brucella and will be useful in development of detection assays from environmental and clinical matrices.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Brucella abortus/isolamento & purificação , Brucella melitensis/isolamento & purificação , Brucelose/diagnóstico , Imunoensaio/normas , Animais , Anticorpos Antibacterianos/sangue , Brucella abortus/imunologia , Brucella melitensis/imunologia , Brucelose/imunologia , Brucelose/microbiologia , Feminino , Testes Imunológicos , Camundongos , Camundongos Endogâmicos BALB C , Coelhos
20.
Infect Immun ; 88(5)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32071068

RESUMO

Brucella spp. are facultative intracellular bacteria notorious for their ability to induce a chronic, and often lifelong, infection known as brucellosis. To date, no licensed vaccine exists for prevention of human disease, and mechanisms underlying chronic illness and immune evasion remain elusive. We and others have observed that B cell-deficient mice challenged with Brucella display reduced bacterial burden following infection, but the underlying mechanism has not been clearly defined. Here, we show that at 1 month postinfection, B cell deficiency alone enhanced resistance to splenic infection ∼100-fold; however, combined B and T cell deficiency did not impact bacterial burden, indicating that B cells only enhance susceptibility to infection when T cells are present. Therefore, we investigated whether B cells inhibit T cell-mediated protection against Brucella Using B and T cell-deficient Rag1-/- animals as recipients, we demonstrate that adoptive transfer of CD4+ T cells alone confers marked protection against Brucella melitensis that is abrogated by cotransfer of B cells. Interestingly, depletion of CD4+ T cells from B cell-deficient, but not wild-type, mice enhanced susceptibility to infection, further confirming that CD4+ T cell-mediated immunity against Brucella is inhibited by B cells. In addition, we found that the ability of B cells to suppress CD4+ T cell-mediated immunity and modulate CD4+ T cell effector responses during infection was major histocompatibility complex class II (MHCII)-dependent. Collectively, these findings indicate that B cells modulate CD4+ T cell function through an MHCII-dependent mechanism which enhances susceptibility to Brucella infection.


Assuntos
Linfócitos B/imunologia , Brucella melitensis/imunologia , Brucelose/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Transferência Adotiva/métodos , Animais , Vacina contra Brucelose/imunologia , Proteínas de Homeodomínio/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...